А.В. Бабаянц

Инфузионная терапия при критических состояниях
Задача

489. A 41-year-old woman underwent resection of an acoustic neuroma under total intravenous anaesthesia (TIVA). The surgical procedure was possible for 12-hour duration with 500 mL blood loss. She is extubated, breathing comfortably, with an ABG of 95 mm Hg, PaO₂ 150 mm Hg oxygen, base deficit 4. A blood work shows Na 143 mEq/L, K 3 mEq/L, HCO₃ 20 mEq/L. Which of the following is the most likely explanation for the patient’s acid-base disturbance?
Клиническая ситуация
Клиническая ситуация
Клиническая ситуация

41-летней женщине выполнено удаление невриномы слухового нерва (ТВВА). Длительность операции - 12 ч.
Клиническая ситуация

41-летней женщине выполнено удаление невриномы слухового нерва (ТВВА). Длительность операции - 12 ч.
Кровопотеря 500 мл. Перевод в ОРИТ, экстубация
Без неврологического дефицита
Витальные показатели стабильны
Анализ кислотно-основного состояния
Анализ кислотно-основного состояния

рН = 7,30; PaCO2 = 42 мм рт.ст.
Анализ кислотно-основного состояния

pН = 7,30; PaCO2 = 42 мм рт.ст.
PaO2 150 мм рт. ст. (инсуффляция О2)
Анализ кислотно-основного состояния

pH = 7,30; PaCO2 = 42 мм рт.ст.
PaO2 150 мм рт. ст. (инсуффляция О2)
BE = - 4; Na 143 мэкв/л; K = 3 мэкв/л
Анализ кислотно-основного состояния

рН = 7,30; РаСО2 = 42 мм рт.ст.
РаО2 150 мм рт. ст. (инсуффляция О2)
ВЕ = - 4; Na 143 мэкв/л; K = 3 мэкв/л
Cl = 115 мэкв/л; НСО3 = 20 мэкв /л
Вопрос

Что из перечисленного вероятнее всего объясняет данные нарушения КОС?
Варианты ответа

(A) Crystalloid resuscitation fluid administered during operation
Варианты ответа

(A) Crystalloid resuscitation fluid administered during operation
(B) Loop diuretic administered to reduce brain swelling
Варианты ответа

(A) Crystalloid resuscitation fluid administered during operation
(B) Loop diuretic administered to reduce brain swelling
(C) TIVA anesthetic agent
Варианты ответа

(A) Crystalloid resuscitation fluid administered during operation
(B) Loop diuretic administered to reduce brain swelling
(C) TIVA anesthetic agent
(D) Hypovolemia due to underresuscitation
Варианты ответа

(A) Crystalloid resuscitation fluid administered during operation
(B) Loop diuretic administered to reduce brain swelling
(C) TIVA anesthetic agent
(D) Hypovolemia due to underresuscitation
(E) Nitroprusside treatment of intraoperative hypertension
489. (A) The patient’s acid-base disorder is a mild metabolic acidosis without an increased anion gap. The most likely diagnosis is intraoperative resuscitation with 0.9% NaCl (normal saline) intravenous solution that is commonly used during neurosurgical procedures because it is slightly hypertonic compared to plasma and theoretically may provide benefit in diminishing brain edema. However, administration of large quantities of normal saline causes a hyperchloremic metabolic acidosis with normal anion gap as a result of dilutional acidosis. The clinical significance of this acid-base disorder remains to be elucidated, but likely does not carry as poor a prognosis as lactic acidosis. Loop diuretic administration generally causes a metabolic "contraction" alkalosis. Propofol infusion syndrome and cyanide toxicity due to nitroprusside both cause an elevated anion gap metabolic acidosis due to lactic acidosis. (1:796; 5:508, 528, 535-6)
489. (A) The patient’s acid-base disorder is a mild metabolic acidosis without an increased anion gap. The most likely diagnosis is intraoperative resuscitation with 0.9% NaCl (normal saline) intravenous solution that is commonly used during neurosurgical procedures because it is slightly hypertonic compared to plasma and theoretically may provide benefit in diminishing brain edema. However, administration of large quantities of normal saline causes a hyperchloremic metabolic acidosis with normal anion gap as a result of dilutional acidosis. The clinical significance of this acid-base disorder remains to be elucidated, but likely does not carry as poor a prognosis as lactic acidosis. Loop diuretic administration generally causes a metabolic “contraction” alkalosis. Propofol infusion syndrome and cyanide toxicity due to nitroprusside both cause an elevated anion gap metabolic acidosis due to lactic acidosis. (1:796; 5:508, 528, 535-6)
(A) The patient’s acid-base disorder is a mild metabolic acidosis without an increased anion gap. The most likely diagnosis is intraoperative resuscitation with 0.9% NaCl (normal saline) intravenous solution that is commonly used during neurosurgical procedures because it is slightly hypertonic compared to plasma and theoretically may provide benefit in diminishing brain edema. However, administration of large quantities of normal saline causes a hyperchloremic metabolic acidosis with normal anion gap as a result of dilutional acidosis. The clinical significance of this acid-base disorder remains to be elucidated, but likely does not carry as poor a prognosis as lactic acidosis. Loop diuretic administration generally causes a metabolic "contraction" alkalosis. Propofol infusion syndrome and cyanide toxicity due to nitroprusside both cause an elevated anion gap metabolic acidosis due to lactic acidosis. (1:796; 5:508, 528, 535-6)
Инфузионная терапия при критических состояниях

• Сепсис
• Кровопотеря
• Кристаллоиды
• Коллоиды
Инфузионная терапия при критических состояниях

• Сепсис
• Кровопотеря
• Кристаллоиды
• Коллоиды
A users’ guide to the 2016 Surviving Sepsis Guidelines

R. Phillip Dellinger¹, Christa A. Schorr¹ and Mitchell M. Levy²

© 2017 SCCM and ESICM
A users’ guide to the 2016 Surviving Sepsis Guidelines

R. Phillip Dellinger*, Christa A. Schorr and

© 2017 SCCM and ESICM

Application of Fluid Resuscitation in Adult Septic Shock

Sepsis-induced hypotension or lactate > 4 mmol/L
(Based on SSC bundle and CMS threshold)

No high flow oxygen and No ESRD on dialysis or CHF

Rapid infusion of 30 ml/kg Crystalloid*

Pneumonia or ALI with high flow oxygen requirements

Not intubated/mechanically ventilated

Consider intubation/mechanical ventilation to facilitate 30 ml/kg crystalloid*

Intubated/mechanically ventilated

Rapid infusion of 30 ml/kg crystalloid*

ESRD on hemodialysis or CHF

Total of 30 ml/kg crystalloid* with frequent reassessment of oxygenation

If no

Total of 30 ml/kg with frequent reassessment of oxygenation

Considerations post 30ml/kg crystalloid infusion

1. Continue to balance fluid resuscitation and vasopressor dose with attention to maintain tissue perfusion and minimize interstitial edema
2. Implement some combination of the list below to aid in further resuscitation choices that may include additional fluid or inotrope therapy
 - blood pressure/heart rate response,
 - urine output,
 - cardiopulmonary ultrasound,
 - CVP, ScvO2,
 - pulse pressure variation
 - lactate clearance/normalization or
 - dynamic measurement such as response of flow to fluid bolus or passive leg raising
3. Consider albumin fluid resuscitation, when large volumes of crystalloid are required to maintain intravascular volume.

ALI=acute lung injury; CHF=congestive heart failure; CMS=US Centers for Medicare and Medicaid Services; CVP=central venous pressure; ESRD=end stage renal disease; kg=kilograms; ml=milliliters; oxgls=oxyhemoglobin; ScvO2=superior vena cava oxygen saturation

Fig. 2 This figure explores the nuances of initial administration of 30 ml/kg crystalloid for sepsis induced hypoperfusion based on patient characteristics. It also draws attention to reassessment tools following the initial fluid dose as an influence on further fluid administration or inotropic therapy.
Application of Fluid Resuscitation in Adult Septic Shock
Application of Fluid Resuscitation in Adult Septic Shock

Sepsis-induced hypotension or lactate ≥ 4 mmol/L
(Based on SSC bundle and CMS threshold)
Application of Fluid Resuscitation in Adult Septic Shock

Sepsis-induced hypotension or lactate \(\geq 4 \) mmol/L
(Based on SSC bundle and CMS threshold)

\textbf{No} high flow oxygen and
\textbf{No} ESRD on dialysis or CHF
Application of Fluid Resuscitation in Adult Septic Shock

Sepsis-induced hypotension or lactate ≥ 4 mmol/L
(Based on SSC bundle and CMS threshold)

- No on hemodialysis or CHF
- Rapid infusion of 30 ml/kg Crystalloid*
Application of Fluid Resuscitation in Adult Septic Shock

Sepsis-induced hypotension or lactate ≥ 4 mmol/L
(Based on SSC bundle and CMS threshold)

- No on hemodialysis or CHF
 - Rapid infusion of 30 ml/kg Crystalloid*

- Needs reassessment of oxygenation
Application of Fluid Resuscitation in Adult Septic Shock

Sepsis-induced hypotension or lactate ≥ 4 mmol/L
(Based on SSC bundle and QMIS thresholds)

Pneumonia or ALI with high flow oxygen requirements

No need for dialysis or CHF

Total of 30 ml/kg crystalloids with frequent reassessment of oxygenation
Application of Fluid Resuscitation in Adult Septic Shock

Sepsis-induced hypotension or lactate ≥ 4 mmol/L
(Based on SSC bundle and CMS threshold)

- No high flow oxygen and No ESRD on dialysis or CHF
- Pneumonia or ALI high flow oxygen

Not intubated/mechanically ventilated

Total of 30 ml/kg with frequent reassessment of oxygenation
Application of Fluid Resuscitation in Adult Septic Shock

Sepsis-induced hypotension or lactate ≥ 4 mmol/L
(Based on SSC bundle and CMS threshold)

- No high flow oxygen and No ESRD on dialysis or CHF
- Pneumonia or All high flow oxygen

- Intubated/mechanically ventilated
- Total of 30 ml/kg crystalloid with frequent reassessment of oxygen
- Rapid infusion of 30 ml/kg
Application of Fluid Resuscitation in Adult Septic Shock

Sepsis-induced hypotension or lactate ≥4 mM/L
(Based on SSC bundle and CMS threshold)

- No high flow oxygen and No ESRD on dialysis or CHF
 - Rapid infusion of 30 ml/kg crystalloid
 - Consider intubation/mechanical ventilation to facilitate 30 ml/kg crystalloid

- Pneumonia or AU high flow oxygen
 - Not intubated/mechanically ventilated

- On hemodialysis or CHF
 - Total of 30 ml/kg crystalloid with frequent reassessment of oxygenation
Application of Fluid Resuscitation in Adult Septic Shock

Sepsis-induced hypotension or lactate ≥ 4 mmol/L
(Based on SSC bundle and CMS threshold)

- No high flow oxygen and No ESRD on dialysis or CHF
 - Total of 30 ml/kg crystalloid* with frequent reassessment of oxygenation

- Pneumonia or AL high flow oxygen required
 - Not intubated/mechanically ventilated

- Cardiac/renal failure or CHF
 - Rapid infusion of 30 ml/kg crystalloid*

Total of 30 ml/kg with frequent reassessment of oxygenation

* Administer 30 ml/kg crystalloid
Application of Fluid Resuscitation in Adult Septic Shock

Sepsis-induced hypotension or lactate ≥ 4 mmol/L
(Based on SSC bundle and CMS threshold)

- No high flow oxygen and No ESRD on dialysis or CHF
- Pneumonia or ALI
- Not intubated/mecanically vent

- Total of 30 ml/kg crystalloid* with frequent reassessment of oxygenation
- Rapid infusion of 30 ml/kg crystalloid
- Rapid infusion of 30 ml/kg crystalloid *

* Administer 30 ml/kg crystalloid within first 3 hours
Application of Fluid Resuscitation in Adult Septic Shock

- Sepsis-induced hypotension or lactate \(\geq 4 \text{ mmol/L} \)
 (Based on SSC bundle and CMS threshold)

- No high flow oxygen and No ESRD on dialysis or CHF

- Pneumonia or ALI
 High flow oxygen required

- Total of 30 ml/kg crystalloid*
 with frequent reassessment of oxygenation

- Rapid infusion of 30 ml/kg Crystalloid*

- Not intubated/mechanically ventilated
 Intubation/mechanical ventilation to follow
 30 ml/kg crystalloid

- Frequent reassessment of oxygenation

* Administer 30 ml/kg crystalloid within first 3 hours
Application of Fluid Resuscitation in Adult Septic Shock

Sepsis-induced hypotension or lactate ≥ 4 mmol/L
(Based on SSC bundle and CMS threshold)

No high flow oxygen and No ESRD on dialysis or CHF

Total of 30 ml/kg crystalloid* with frequent reassessment of oxygenation

Rapid infusion of 30 ml/kg Crystalloid*

Pneumonia or high flow oxygen

Not intubated/mechanically ventilated

ESRD on hemodialysis or CHF

If no intubation

* Administer 30 ml/kg crystalloid within first 3 hours
Application of Fluid Resuscitation in Adult Septic Shock

Sepsis-induced hypotension or lactate ≥ 4 mmol/L
(Based on SSC bundle and CMS threshold)

- No high flow oxygen and No ESRD on dialysis or CHF
- Total of 30 ml/kg crystalloid* with frequent reassessment of oxygenation

- Rapid infusion of 30 ml/kg Crystalloid*

- Pneumonia or ALI with high flow oxygen requirements
- Not intubated mechanically ventilated
- Total of 30 ml/kg crystalloid* with frequent reassessment of oxygenation

- ESRD on dialysis or CHF
- Total of 30 ml/kg crystalloid with frequent reassessment of oxygenation

* Administer 30 ml/kg crystalloid within first 3 hours
30 мл/кг кристаллоидов
30 мл/кг кристаллоидов
Что потом?
30 мл/кг кристаллоидов
Что потом?

Considerations post 30ml/kg crystalloid infusion
1. Continue to balance fluid resuscitation and vasopressor dose with attention to maintain tissue perfusion and minimize interstitial edema.
30 мл/кг кристаллоидов
Что потом?

Considerations post 30ml/kg crystalloid infusion

1. Continue to balance fluid resuscitation and vasopressor dose with attention to maintain tissue perfusion and minimize interstitial edema
2. Implement some combination of the list below to aid in further resuscitation choices that may include additional fluid or inotrope therapy
30 мл/кг кристаллоидов
Что потом?

Considerations post 30ml/kg crystalloid infusion

1. Continue to balance fluid resuscitation and vasopressor dose with attention to maintain tissue perfusion and minimize interstitial edema
2. Implement some combination of the list below to aid in further resuscitation choices that may include additional fluid or inotrope therapy
 * blood pressure/heart rate response,
30 мл/кг кристаллоидов
Что потом?

Considerations post 30ml/kg crystalloid infusion
1. Continue to balance fluid resuscitation and vasopressor dose with attention to maintain tissue perfusion and minimize interstitial edema
2. Implement some combination of the list below to aid in further resuscitation choices that may include additional fluid or inotrope therapy
 • blood pressure/heart rate response,
 • urine output,
30 мл/кг кристаллоидов
Что потом?

Considerations post 30ml/kg crystalloid infusion

1. Continue to balance fluid resuscitation and vasopressor dose with attention to maintain tissue perfusion and minimize interstitial edema
2. Implement some combination of the list below to aid in further resuscitation choices that may include additional fluid or inotrope therapy
 • blood pressure/heart rate response,
 • urine output,
 • cardiothoracic ultrasound,
30 мл/кг кристаллоидов
Что потом?

Considerations post 30ml/kg crystalloid infusion

1. Continue to balance fluid resuscitation and vasopressor dose with attention to maintain tissue perfusion and minimize interstitial edema.
2. Implement some combination of the list below to aid in further resuscitation choices that may include additional fluid or inotrope therapy.
 - blood pressure/heart rate response,
 - urine output,
 - cardiothoracic ultrasound,
 - CVP, ScvO2,
30 мл/кг кристаллоидов
Что потом?

Considerations post 30ml/kg crystalloid infusion

1. Continue to balance fluid resuscitation and vasopressor dose with attention to maintain tissue perfusion and minimize interstitial edema

2. Implement some combination of the list below to aid in further resuscitation choices that may include additional fluid or inotrope therapy

- blood pressure/heart rate response,
- urine output,
- cardiothoracic ultrasound,
- CVP, ScvO2,
- pulse pressure variation
Considerations post 30ml/kg crystalloid infusion

1. Continue to balance fluid resuscitation and vasopressor dose with attention to maintain tissue perfusion and minimize interstitial edema.

2. Implement some combination of the list below to aid in further resuscitation choices that may include additional fluid or inotrope therapy:
 - blood pressure/heart rate response,
 - urine output,
 - cardiothoracic ultrasound,
 - CVP, ScvO2,
 - pulse pressure variation
 - lactate clearance/normalization or
30 мл/кг кристаллоидов
Что потом?

Considerations post 30ml/kg crystalloid infusion

1. Continue to balance fluid resuscitation and vasopressor dose with attention to maintain tissue perfusion and minimize interstitial edema
2. Implement some combination of the list below to aid in further resuscitation choices that may include additional fluid or inotrope therapy
 - blood pressure/heart rate response,
 - urine output,
 - cardiothoracic ultrasound,
 - CVP, ScvO2,
 - pulse pressure variation
 - lactate clearance/normalization or
 - dynamic measurement such as response of flow to fluid bolus or passive leg raising
Considerations post 30ml/kg crystalloid infusion

1. Continue to balance fluid resuscitation and vasopressor dose with attention to maintain tissue perfusion and minimize interstitial edema.

2. Implement some combination of the list below to aid in further resuscitation choices that may include additional fluid or inotrope therapy:
 - blood pressure/heart rate response,
 - urine output,
 - cardiothoracic ultrasound,
 - CVP, ScvO2,
 - pulse pressure variation
 - lactate clearance/normalization or
 - dynamic measurement such as response of flow to fluid bolus or passive leg raising

3. Consider albumin fluid resuscitation, when large volumes of crystalloid are required to maintain intravascular volume.
Инфузионная терапия при критических состояниях

- Сепсис
- Кровопотеря
- Кристаллоиды
- Коллоиды
Приказ Минздрава РФ от 25 ноября 2002 г. N 363
«Об утверждении Инструкции по применению компонентов крови»
Нормативные документы

Приказ Минздрава РФ от 25 ноября 2002 г. N 363
«Об утверждении Инструкции по применению компонентов крови»

МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ
ПРИКАЗ
от 2 апреля 2013 г. N 183н
ОБ УТВЕРЖДЕНИИ ПРАВИЛ
КЛИНИЧЕСКОГО ИСПОЛЬЗОВАНИЯ ДОНОРСКОЙ КРОВИ
И (ИЛИ) ЕЕ КОМПОНЕНТОВ
АНЕСТЕЗИЯ, ИНТЕНСИВНАЯ ТЕРАПИЯ И РЕАНИМАЦИЯ В АКУШЕРСТВЕ И ГИНЕКОЛОГИИ
Клинические рекомендации Протоколы лечения
Под редакцией
А.В. Куликова, Е.М. Шифмана
Издание второе, дополненное и переработанное

2017
Лечение тяжелых периоперационных кровотечений
Рекомендации Европейского Общества Анестезиологов
Лечение тяжелых периоперационных кровотечений
Рекомендации Европейского Общества Анестезиологов
Лечение тяжелых кровотечений и коагулопатии при травме
Европейское руководство
Лечение тяжелых кровотечений и коагулопатии при травме
Европейское руководство
Классификация кровопотери ВОЗ
<table>
<thead>
<tr>
<th>Class I Mild</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>% of blood volume lost</td>
<td><15%</td>
</tr>
<tr>
<td>Volume lost in 70 kg adult</td>
<td><750 ml</td>
</tr>
<tr>
<td>Pulse rate</td>
<td>Normal</td>
</tr>
<tr>
<td>Pulse pressure</td>
<td>Normal</td>
</tr>
<tr>
<td>Systolic blood pressure</td>
<td>Normal</td>
</tr>
<tr>
<td>Capillary refill</td>
<td>Normal</td>
</tr>
<tr>
<td>Respiratory rate</td>
<td>Normal</td>
</tr>
<tr>
<td>Mental state</td>
<td>Alert</td>
</tr>
<tr>
<td>Urine output</td>
<td>>30 ml/hr</td>
</tr>
<tr>
<td></td>
<td>Class I Mild</td>
</tr>
<tr>
<td>------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>% of blood volume lost</td>
<td><15%</td>
</tr>
<tr>
<td>Volume lost in 70 kg adult</td>
<td><750 ml</td>
</tr>
<tr>
<td>Pulse rate</td>
<td>Normal</td>
</tr>
<tr>
<td>Pulse pressure</td>
<td>Normal</td>
</tr>
<tr>
<td>Systolic blood pressure</td>
<td>Normal</td>
</tr>
<tr>
<td>Capillary refill</td>
<td>Normal</td>
</tr>
<tr>
<td>Respiratory rate</td>
<td>Normal</td>
</tr>
<tr>
<td>Mental state</td>
<td>Alert</td>
</tr>
<tr>
<td>Urine output</td>
<td>>30 ml/hr</td>
</tr>
<tr>
<td></td>
<td>Class I Mild</td>
</tr>
<tr>
<td>------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>% of blood volume lost</td>
<td><15%</td>
</tr>
<tr>
<td>Volume lost in 70 kg adult</td>
<td><750 ml</td>
</tr>
<tr>
<td>Pulse rate</td>
<td>Normal</td>
</tr>
<tr>
<td>Pulse pressure</td>
<td>Normal</td>
</tr>
<tr>
<td>Systolic blood pressure</td>
<td>Normal</td>
</tr>
<tr>
<td>Capillary refill</td>
<td>Normal</td>
</tr>
<tr>
<td>Respiratory rate</td>
<td>Normal</td>
</tr>
<tr>
<td>Mental state</td>
<td>Alert</td>
</tr>
<tr>
<td>Urine output</td>
<td>>30 ml/hr</td>
</tr>
<tr>
<td></td>
<td>Class I Mild</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>% of blood volume lost</td>
<td><15%</td>
</tr>
<tr>
<td>Volume lost in 70 kg adult</td>
<td><750 ml</td>
</tr>
<tr>
<td>Pulse rate</td>
<td>Normal</td>
</tr>
<tr>
<td>Pulse pressure</td>
<td>Normal</td>
</tr>
<tr>
<td>Systolic blood pressure</td>
<td>Normal</td>
</tr>
<tr>
<td>Capillary refill</td>
<td>Normal</td>
</tr>
<tr>
<td>Respiratory rate</td>
<td>Normal</td>
</tr>
<tr>
<td>Mental state</td>
<td>Alert</td>
</tr>
<tr>
<td>Urine output</td>
<td>>30 ml/hr</td>
</tr>
</tbody>
</table>
VII. Правила переливания консервированной донорской крови и эритроцитсодержащих компонентов

30. Медицинским показанием к трансфузии (переливанию) донорской крови и эритроцитсодержащих компонентов при острой анемии вследствие массивной кровопотери является потеря 25 - 30% объема циркулирующей крови, сопровождающаяся снижением уровня гемоглобина ниже 70 - 80 г/л и гематокрита ниже 25% и возникновением циркуляторных нарушений.

ПРИКАЗ от 2 апреля 2013 г. № 183н
ОБ УТВЕРЖДЕНИИ ПРАВИЛ КЛИНИЧЕСКОГО ИСПОЛЬЗОВАНИЯ ДОНОРСКОЙ КРОВИ И (ИЛИ) ЕЕ КОМПОНИЕНТОВ
СЗП

При острой массивной кровопотере (более 30% ОЦК, для взрослых - более 1500 мл), сопровождающейся развитием острого ДВС-синдрома, количество переливаемой СЗП должно составлять не менее 25 - 30% всего объема переливаемой крови и (или) ее компонентов, назначаемых для восполнения кровопотери (не менее 800 - 1000 мл).
СЗП – по показаниям

We recommend against indiscriminate use of plasma transfusion in perioperative bleeding management. 1C
Инфузионная терапия при критических состояниях

• Сепсис
• Кровопотеря
• Кристаллоиды
• Коллоиды
Обезвоживание
Обезвоживание или гиповолемия?
Два разных диагноза
Два разных диагноза

Две разные лечебные тактики
Продукция мочи
Продукция мочи и перспириация
Продукция мочи и перспириация

вызывает потерю жидкости, не содержащей коллоидов

Продукция мочи и перспириация
Если:

• эти потери носят патологический характер
Продукция мочи и перспирация

Если:

• эти потери носят патологический характер
• ограничено физиологическое усвоение воды из кишечника
Если:
• эти потери носят патологический характер
• ограничено физиологическое усвоение воды из кишечника

их необходимо компенсировать путем введения кристаллоидов
Острая гиповолемия
Острая гиповолемия

• Быстро снижается внутрисосудистый объем

Острая гиповолемия

• Быстро снижается внутрисосудистый объем
• Нарушается тканевая перфузия

Острая гиповолемия

• Быстро снижается внутрисосудистый объем
• Нарушается тканевая перфузия
• Может привести к органной недостаточности
И, наряду с этим ...
Избегать гиперволемии

При инфузии кристаллоидов/коллоидов во избежание отека интерстиция и чрезмерной преднагрузки следует избегать гиперволемии 1В
Периоперационная инфузия: где граница между недостаточным и чрезмерным?
Алгоритм стабилизации гемодинамики при гиповолемии
Снижение исходного АД >20%
или среднее АД < 60 mmHg

* SVV- вариабельность ударного объема

Снижение исходного АД >20% или среднее АД < 60 mmHg
Снижение исходного АД >20%
или среднее АД < 60 mmHg
не требуется

* SVV- вариабельность ударного объема

Снижение исходного АД >20% или среднее АД < 60 mmHg

* SVV- вариабельность ударного объема

Терапия не требуется

Да

нет

Снижение исходного АД >20% или среднее АД < 60 mmHg

Кровопотеря или перераспределение жидкости при операции? SVV>15%?

Да

Терапия не требуется

нет

* SVV- вариабельность ударного объема

Снижение исходного АД >20% или среднее АД < 60 mmHg

Потеря или перераспределение жидкости при операции?

SVV>15%?

Да

нет

Терапия не требуется

* SVV- вариабельность ударного объема

Снижение исходного АД >20% или среднее АД < 60 mmHg

Кровопотеря или перераспределение жидкости при операции?

* SVV- вариабельность ударного объема

Nет показаний для инфузии

Терапия не требуется

Снижение исходного АД >20% или среднее АД < 60 mmHg

Кровопотеря или перераспределение жидкости при операции?

SVV > 15%?

Терапия не требуется

нет

Оценка функции сердца

Хроническое / Острое поражение

(ТЭ ЭхоКГ или термодилюционные методы)

нет

Терапия не требуется

нет

Нет показаний для инфузии

нет

* SVV- вариабельность ударного объема

Снижение исходного АД >20% или среднее АД < 60 mmHg

Кровопотеря или перераспределение жидкости при операции?

SVV > 15%?

Да

Нет показаний для инфузии

Терапия не требуется

Нет

Низкий сердечный выброс?

Оценка функции сердца

Хроническое / Острое поражение (ТЭ ЭхоКГ или термодилуционные методы)

Нет

* SVV- вариабельность ударного объема

Снижение исходного АД >20% или среднее АД < 60 mmHg

Кровопотеря или перераспределение жидкости при операции? SVV>15%?

да

Низкий сердечный выброс?

Оценка функции сердца

Хроническое / Острое поражение
(TЭ ЭхоКГ или термодилюционные методы)

Нет показаний для инфузии

Терапия не требуется

* SVV- вариабельность ударного объема

Снижение исходного АД >20% или среднее АД < 60 mmHg — Да

Кровопотеря или перераспределение жидкости при операции? SVV>15%? — Да

Поражение почек или сепсис

Терапия не требуется для инфузии

Нет показаний для инфузии

Термодилюционные (ТЭ эхокГ) или ЭхоКГ

Хроническое / Острое поражение функции сердца

Низкий сердечный выброс?

Оценка функции сердца

Снижение исходного АД >20% или среднее АД < 60 mmHg Кровопотеря или перераспределение жидкости при операции? SVV>15%? Поражение почек или сепсис Кристаллоиды: объем кровопотери = 4:1 Оценка функции сердца Хроническое / Острое поражение (ТЭ ЭхоКГ или термодилюционные методы) Низкий сердечный выброс? Терапия не требуется

* SVV- вариабельность ударного объема

Снижение исходного АД >20% или среднее АД < 60 mmHg
Кровопотеря или перераспределение жидкости при операции?
SVV >15%?
Поражение почек или сепсис

- да
- нет

ГЭК 130/0,4 : объем кровопотери = 1:1

- да
- нет

Кристаллоиды: объем кровопотери = 4:1

- да
- нет

Нет показаний для инфузии

Терапия не требуется

Оценка функции сердца

- Хроническое / Острое поражение
 (ТЭ ЭхоКГ или термодилюционные методы)

Низкий сердечный выброс?

* SVV- вариабельность ударного объема
Применение ГЭК сегодня
Применение ГЭК сегодня

Hydroxyethyl starch solutions: CMDh introduces new measures to protect patients
Medicines to remain on the market provided that training, controlled access and warnings on the packaging are implemented

The CMDh¹ has decided that hydroxyethyl starch (HES) solutions for infusion should remain on the market provided that a combination of additional measures to protect patients is implemented. This follows further reflection, in consultation with EU Member States, on whether it would be feasible to introduce new measures that would effectively reduce the risks with these medicines.

HES solutions for infusion are used to replace plasma volume following acute (sudden) blood loss, where treatment with alternative products known as ‘crystalloids’ alone is not considered sufficient.

In January 2018, EMA’s safety committee PRAC recommended suspending the marketing authorisations of these medicines because they continued to be used in critically ill patients and patients with sepsis despite restrictions introduced in 2013 due to the risk of kidney injury and death in these patients.

The CMDh agreed with the PRAC’s assessment of the serious risks in critically ill patients and patients with sepsis. However, the CMDh gave further consideration to the place of HES in the clinical practice of some countries, noted that previous risk minimisation measures had some effect, and considered that a combination of new risk minimisation measures would effectively ensure that HES solutions are not used in patients at risk.

The new measures are:
- the implementation of a controlled access programme by the companies holding the marketing authorisations to ensure that only accredited hospitals will be supplied with these medicines. The accreditation would require that relevant healthcare professionals receive training on the safe use of HES solutions for infusion. Further details about the training and the controlled access programme will be provided to hospitals and healthcare professionals in due time;
- warnings in the medicines’ packaging and at the top of the summaries of product characteristics (SmPCs) reminding healthcare professionals that these medicines must not be used in patients with sepsis or kidney impairment or in critically ill patients;

¹ The CMDh is a medicines regulatory body representing the European Union (EU) Member States, Iceland, Liechtenstein and Norway.
Применение ГЭК сегодня

29 июня 2018 года на пленарном заседании CMDh большинством голосов принято решение о том, что препараты, содержащие ГЭК, должны оставаться в странах ЕС при условии введения дополнительных мер для защиты определенных группы пациентов.

Hydroxyethyl starch solutions: CMDh introduces new measures to protect patients
Medicines to remain on the market provided that training, controlled access and warnings on the packaging are implemented

The new measures are:

- the implementation of a controlled access programme by the companies holding the marketing authorisations to ensure that only accredited hospitals will be supplied with these medicines. The accreditation would require that relevant healthcare professionals receive training on the safe use of HES solutions for infusion. Further details about the training and the controlled access programme will be provided to hospitals and healthcare professionals in due time;

- warnings in the medicines’ packaging and at the top of the summaries of product characteristics (SmPCs) reminding healthcare professionals that these medicines must not be used in patients with ascites or kidney impairment or in critically ill patients;

The CMDh is a medicines regulatory body representing the European Union (EU) Member States, Iceland, Liechtenstein and Norway.
Применение ГЭК сегодня

29 июня 2018 года на пленарном заседании CMDh большинством голосов принято решение о том, что препараты, содержащие ГЭК, должны оставаться в странах ЕС при условии введения дополнительных мер для защиты определенных группы пациентов.

В июне 2018 года были возобновлены два клинических исследования ГЭК в хирургии и травматологии (PHOENICS и TETHYS)
Применение ГЭК сегодня
Что нужно учитывать:
Применение ГЭК сегодня
Что нужно учитывать:

- В РФ не было запрета и ограничений на применение ГЭК в рамках зарегистрированных показаний
Применение ГЭК сегодня
Что нужно учитывать:

- В РФ не было запрета и ограничений на применение ГЭК в рамках зарегистрированных показаний
- Показанием к применению ГЭК является лечение гиповолемии при острой кровопотере, если применение растворов кристаллоидов является недостаточным
Применение ГЭК сегодня
Что нужно учитывать:

- В РФ не было запрета и ограничений на применение ГЭК в рамках зарегистрированных показаний.
- Показанием к применению ГЭК является лечение гиповолемии при острой кровопотере, если применение растворов кристаллоидов является недостаточным.
- Максимальная суточная доза 6% ГЭК - 30 мл/кг. Должна быть использована наименьшая эффективная доза препарата.
Применение ГЭК сегодня
Что нужно учитывать:

❖ В РФ не было запрета и ограничений на применение ГЭК в рамках зарегистрированных показаний

❖ Показанием к применению ГЭК является лечение гиповолемии при острой кровопотере, если применение растворов кристаллоидов является недостаточным

❖ Максимальная суточная доза 6% ГЭК - 30 мл/кг. Должна быть использована наименьшая эффективная доза препарата

❖ Лечение должно сопровождаться непрерывным мониторингом гемодинамики, и при достижении необходимого результата инфузию следует прекратить
Применение ГЭК сегодня
Что нужно учитывать:

- В РФ не было запрета и ограничений на применение ГЭК в рамках зарегистрированных показаний.
- Показанием к применению ГЭК является лечение гиповолемии при острой кровопотере, если применение растворов кристаллоидов является недостаточным.
- Максимальная суточная доза 6% ГЭК - 30 мл/кг. Должна быть использована наименьшая эффективная доза препарата.
- Лечение должно сопровождаться непрерывным мониторингом гемодинамики, и при достижении необходимого результата инфузию следует прекратить.
- Длительность применения гидроксиэтилкрахмала должна быть ограничена начальной фазой восполнения ОЦК и не должна превышать 24 ч.
Применение ГЭК сегодня
Что нужно учитывать:

❖ В РФ не было запрета и ограничений на применение ГЭК в рамках зарегистрированных показаний
❖ Показанием к применению ГЭК является лечение гиповолемии при острой кровопотере, если применение растворов кристаллоидов является недостаточным
❖ Максимальная суточная доза 6% ГЭК - 30 мл/кг. Должна быть использована наименьшая эффективная доза препарата
❖ Лечение должно сопровождаться непрерывным мониторингом гемодинамики, и при достижении необходимого результата инфузию следует прекратить
❖ Длительность применения гидроксиэтилкрахмала должна быть ограничена начальной фазой восполнения ОЦК и не должна превышать 24 ч
❖ Применение у детей не рекомендуется, в связи ограниченным опытом применения у данной возрастной категории
Снижение исходного АД >20% или среднее АД < 60 mmHg

Кровопотеря или перераспределение жидкости при операции?

Поражение почек или сепсис?

Кристаллоиды: объем кровопотери = 4:1

Низкий сердечный выброс?

Оценка функции сердца

Хроническое / Острое поражение (ТЭ ЭхоКГ или термодилюционные методы)

Нет показаний для инфузии

Терапия не требуется

 ГЭК 130/0,4 : объем кровопотери = 1:1

* SVV- вариабельность ударного объема

Снижение исходного АД >20% или среднее АД < 60 mmHg

Кровопотеря или перераспределение жидкости при операции?

Поражение почек или сепсис?

ГЭК 130/0,4 : объем кровопотери = 1:1

Терапия эффективна? (восстановление АД или SVV <15%)

Кристаллоиды: объем кровопотери = 4:1

Низкий сердечный выброс?

Оценка функции сердца

Хроническое / Острое поражение

(ТЭ ЭхоКГ или термодилюционные методы)

Терапия не требуется

* SVV- вариабельность ударного объема

Снижение исходного АД >20% или среднее АД < 60 mmHg

Кровопотеря или перераспределение жидкости при операции? СВВ > 15%?

Поражение почек или сепсис

ГЭК 130/0,4 : объем кровопотери = 1:1

Терапия эффективна? (восстановление АД или SVV < 15%)

Кристаллоиды: объем кровопотери = 4:1

Кровопотеря или перераспределение жидкости при операции?

Нет показаний для инфузии

Терапия не требуется

Низкий сердечный выброс?

Нет

Базовая инфузия кристаллоидов 1 мл/кг/час

Терапия эффективна?

Оценка функции сердца

Нет

Хроническое / Острое поражение (ТЭ ЭхоКГ или термодилюционные методы)

* SVV- вариабельность ударного объема
Снижение исходного АД >20% или среднее АД < 60 mmHg

Кровопотеря или перераспределение жидкости при операции? СVV > 15%?

Поражение почек или сепсис

ГЭК 130/0,4 : объем кровопотери = 1:1

Кристаллоиды: объем кровопотери = 4:1

Оценка функции сердца

Хроническое / Острое поражение (ТЭ ЭхоКГ или термодилуционные методы)

Терапия эффективна? (восстановление АД или SVV <15%)

Терапия не требуется

Базовая инфузия кристаллоидов 1 мл/кг/час

* SVV- вариабельность ударного объема

Снижение исходного АД >20% или среднее АД < 60 мм рт.ст.

Кровопотеря или перераспределение жидкости при операции?

Поражение почек или сепсис?

SVV > 15%?

ГЭК 130/0,4 : объем кровопотери = 1:1

Кристаллоиды: объем кровопотери = 4:1

Терапия эффективна?

(Восстановление АД или SVV < 15%)

Базовая инфузия кристаллоидов 1 мл/кг/час

Нет

Низкий сердечный выброс?

* SVV- вариабельность ударного объема

Терапия не требуется

Оценка функции сердца

Хроническое / Острое поражение
(TЭ ЭхоКГ или термодилуционные методы)

Снижение исходного АД >20% или среднее АД < 60 mmHg или перераспределение жидкости при операции?

Кровопотеря или перераспределение жидкости?

Поражение почек или сепсис?

ГЭК 130/0,4 : объем кровопотери = 1:1

Криatalogиды: объем кровопотери = 4:1

Терапия эффективна? (восстановление АД или SVV < 15%)

Базовая инфузия кристаллоидов 1 мл/кг/час

Терапия эффективна? (восстановление АД или SVV < 15%)

Низкий сердечный выброс?

*SVV- вариабельность ударного объема

Терапия не требуется

Оценка функции сердца

Нет показаний для инфузии

Нет

Хроническое / Острое поражение (ТЭ ЭхоКГ или термодилуционные методы)

Да

Нет

Да

Да

Да

Нет

Да

Нет

Нет

Да

Снижение исходного АД >20% или среднее АД < 60 mmHg

Кровопотеря или перераспределение жидкости при операции? SVV > 15%?

Поражение почек или сепсис

ГЭК 130/0,4 : объем кровопотери = 1:1

Кристаллоиды: объем кровопотери = 4:1

Терапия эффективна? (восстановление АД или SVV < 15%)?

Низкий сердечный выброс?

Базовая инфузия кристаллоидов 1 мл/кг/час

Нет

Терапия не требуется

Нет показаний для инфузии

Оценка функции сердца

Хроническое / Острое поражение (ТЭ ЭхоКГ или термодилюционные методы)

Добутамин

*SVV- вариабельность ударного объема
Снижение исходного АД >20% или среднее АД < 60 mmHg?
Кровопотеря или перераспределение жидкости при операции?
Поражение почек или сепсис?

ГЭК 130/0,4 : объем кровопотери = 1:1
Кристаллоиды: объем кровопотери = 4:1

Терапия эффективна?
Восстановление АД или SVV <15%?

Базовая инфузия кристаллоидов 1 мл/кг/час

Низкий сердечный выброс?

Оценка функции сердца
Хроническое / Острое поражение (ТЭ ЭхоКГ или термодилюционные методы)

Терапия не требуется
Нет показаний для инфузии

Нет
Да
Да
Да
Нет
Да
Да
Нет

*SVV- вариабельность ударного объема

Снижение исходного АД >20% или среднее АД < 60 mmHg

Кровопотеря или перераспределение жидкости при операции?

Поражение почек или сепсис?

нет ➔ ГЭК 130/0,4 : объем кровопотерии = 1:1 ➔ Терапия эффективна? (восстановление АД или SVV < 15%)

да ➔ Кристаллоиды: объем кровопотерии = 4:1 ➔ Базовая инфузия кристаллоидов 1 мл/кг/час ➔ Низкий сердечный выброс?

нет ➔ Оценка функции сердца

нет ➔ Терапия не требуется

для инфузии

да ➔ Хроническое / Острое поражение (ТЭ ЭхоКГ или термодилюционные методы)

Добутамин

Норадреналин

Терапия эффективна?

да ➔ Базовая инфузия кристаллоидов 1 мл/кг/час ➔ Низкий сердечный выброс?

нет ➔ Оценка функции сердца

нет ➔ Терапия не требуется

* SVV - вариабельность ударного объема

«Смертельная триада» массивной кровопотери
«Смертельная триада» массивной кровопотери

- Гипотермия
«Смертельная триада» массивной кровопотери

• Гипотермия
• Ацидоз
«Смертельная триада» массивной кровопотери

- Гипотермия
- Ацидоз
- Коагулопатия

8.2. Correction of confounding factors
Recommendations

We recommend maintaining perioperative normothermia because it reduces blood loss and transfusion requirements. 1B
Гипотермия

- нарушение функции тромбоцитов

Гипотермия

- нарушение функции тромбоцитов
- нарушение функции факторов свертывания крови (снижение температуры на 1°C уменьшает их активность на 10%)

Гипотермия

- нарушение функции тромбоцитов
- нарушение функции факторов свертывания крови (снижение температуры на 1°C уменьшает их активность на 10%)
- ингибирование ферментов

Гипотермия

- нарушение функции тромбоцитов
- нарушение функции факторов свертывания крови (снижение t на 1°С уменьшает их активность на 10%)
- ингибирование ферментов
- фибринолиз

Ацидоз прямо коррелирует с летальностью при тяжелой травме
Коррекцию рН и лечение ацидоз-индуцированной коагулопатии следует проводить одновременно.
Гиперхлоремический дилуционный ацидоз
Гиперхлоремический дилуционный ацидоз

0,9% раствор натрия хлорида
растворы ГЭК, декстрана, желатина и проч.
не содержат донаторов резервной щелочности
Гиперхлоремический дилуционный ацидоз

0,9% раствор натрия хлорида
растворы ГЭК, декстрана, желатина и проч.
не содержат донаторов резервной щелочности

Гипернатриемия
Гиперхлоремия
Гиперхлоремический дилюционный ацидоз

0,9% раствор натрия хлорида
растворы ГЭК, декстрана, желатина и проч.
не содержат донаторов резервной щелочности

Гипернатриемия
Гиперхлоремия

Гиперхлоремический дилюционный ацидоз

С.Г. Решетников, Д.Н. Проценко, А.В. Бабаянц, Б.Р. Гельфанд
Гиперхлоремический дилуционный ацидоз

- Смещение кривой диссоциации оксигемоглобина вправо
- Олигурия
- Нарушение работы ферментных систем
- Послеоперационная тошнота и рвота
Состав полиэлектролитных растворов
(ммоль/л)

<table>
<thead>
<tr>
<th></th>
<th>Плазма</th>
<th>NaCl 0,9%</th>
<th>Рингер</th>
<th>Сteroфондин</th>
<th>Реамберин</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na⁺</td>
<td>140</td>
<td>154</td>
<td>147</td>
<td>145</td>
<td>147</td>
</tr>
<tr>
<td>K⁺</td>
<td>4</td>
<td>-</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Ca²⁺</td>
<td>2,45</td>
<td>-</td>
<td>2,25</td>
<td>2,5</td>
<td>-</td>
</tr>
<tr>
<td>Mg²⁺</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>1,25</td>
</tr>
<tr>
<td>Cl</td>
<td>100</td>
<td>154</td>
<td>156</td>
<td>127</td>
<td>109</td>
</tr>
<tr>
<td>HCO₃⁻</td>
<td>24</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Лактат</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ацетат</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>24</td>
<td>-</td>
</tr>
<tr>
<td>Малат</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>Сукцинат</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>44,7</td>
</tr>
<tr>
<td>Осмолярность мОсм/л</td>
<td>300</td>
<td>308</td>
<td>309</td>
<td>304</td>
<td>313</td>
</tr>
<tr>
<td>РСИ (SID)</td>
<td>47</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>43</td>
</tr>
</tbody>
</table>
Состав полиэлектролитных растворов (ммоль/л)

<table>
<thead>
<tr>
<th></th>
<th>Плазма</th>
<th>NaCl 0,9%</th>
<th>Рингер</th>
<th>Стерофундин</th>
<th>Реамберин</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na</td>
<td>140</td>
<td>154</td>
<td>147</td>
<td>145</td>
<td>147</td>
</tr>
<tr>
<td>K</td>
<td>4</td>
<td>-</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Ca</td>
<td>2,45</td>
<td>-</td>
<td>2,25</td>
<td>2,5</td>
<td>-</td>
</tr>
<tr>
<td>Mg</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>1,25</td>
</tr>
<tr>
<td>Cl</td>
<td>100</td>
<td>154</td>
<td>156</td>
<td>127</td>
<td>109</td>
</tr>
<tr>
<td>HCO₃⁻</td>
<td>24</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Лактат</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ацетат</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>24</td>
<td>-</td>
</tr>
<tr>
<td>Малат</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>Сукцинат</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>44,7</td>
</tr>
<tr>
<td>Оsmолярность</td>
<td>300</td>
<td>308</td>
<td>309</td>
<td>304</td>
<td>313</td>
</tr>
<tr>
<td>РСИ (SID)</td>
<td>47</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>43</td>
</tr>
</tbody>
</table>
Герасимов Л.В., Марченков Ю.В., Волков Д.П., Родионов Е.П., Измайлов В.В.

ВОЗМОЖНОСТИ КОРРЕКЦИИ МЕТАБОЛИЧЕСКИХ НАРУШЕНИЙ С ИСПОЛЬЗОВАНИЕМ РЕАМБЕРИНА В ОСТРОМ ПЕРИОДЕ ТРАВМЫ

1ГКБ им. С.П. Боткина, Москва; 2ФГБУ «НИИ общей реаниматологии им. В.А. Неговского», Москва

Обследовано 56 больных в возрасте 18–60 лет, поступивших в реанимационное отделение № 18 ГКБ им. С.П. Боткина с диагнозом «тяжелая сочетанная травма». Проведена сравнительная оценка влияния полиэлектролитного раствора «Реамберин» на кислотно-основное состояние, осмоляльность и электролитный состав плазмы у больных в остром посттравматическом периоде. Установлено, что на фоне традиционной инфузионной терапии у больных отмечались метаболический ацидоз и гиперхлоремия. В группе, получавшей реамберин, уже на 2-е сутки происходила нормализация кислотно-основного состояния у 82% больных, а также отмечались более низкие показатели концентрации хлоридов. Применение реамберина существенно не влияло на осмоляльность плазмы и частоту развития алькалоzą в остром периоде травмы.

Ключевые слова: тяжелая сочетанная травма; метаболический ацидоз; инфузионная терапия; реамберин.

Для цитирования: Анестезиология и реаниматология. 2015; 60(6): 50-54.
Выводы
Выводы

1. На фоне применения традиционных кристаллоидных растворов нарушения кислотно-основного состояния в остром периоде травмы представлены лактат-ацидозом, гиперхлоремическим и дилуционным ацидозом.
Выводы

1. На фоне применения традиционных кристаллоидных растворов нарушения кислотно-основного состояния в остром периоде травмы представлены лактат-ацидозом, гиперхлоремическим и дилуционным ацидозом.

2. В группе, где использовался реамберин, уже на 2-е сутки происходила нормализация показателей кислотно-основного состояния у 82% больных, а также отмечались более низкие показатели концентрации хлоридов.
Выводы

1. На фоне применения традиционных кристаллоидных растворов нарушения кислотно-основного состояния в остром периоде травмы представлены лактат-ацидозом, гиперхлоремическим и дилуционным ацидозом.

2. В группе, где использовался реамберин, уже на 2-e сутки происходила нормализация показателей кислотно-основного состояния у 82% больных, а также отмечались более низкие показатели концентрации хлоридов.

3. Включение в состав инфузионной терапии реамберина не влияло на осмоляльность плазмы и частоту развития алкалоза в остром периоде травмы.
We suggest the use of balanced solutions for crystalloids and as a basic solute for iso-oncotic preparations.
We suggest the use of balanced solutions for crystalloids and as a basic solute for iso-oncotic preparations. 2C

9.5.2. Fluid resuscitation
Recommendation

We recommend the use of isotonic and balanced resuscitation fluids in bleeding children. 1C
Инфузионная терапия при критических состояниях
Инфузионная терапия при критических состояниях

• Сепсис
Инфузионная терапия при критических состояниях

• Сепсис
• Кровопотеря
Инфузионная терапия при критических состояниях

• Сепсис
• Кровопотеря
• Кристаллоиды
Инфузионная терапия при критических состояниях

• Сепсис
• Кровопотеря
• Кристаллоиды
• Коллоиды
Филипп Ауреол Теофраст Бомбаст фон Гогенхайм

1493 - 1541
Парацельс

1493 - 1541
Парацельс

Dosis facit venenum
Благодарю за внимание
Thank you for attention